76 research outputs found

    Quantum theory of light scattering in a one-dimensional channel: Interaction effect on photon statistics and entanglement entropy

    Get PDF
    We provide a complete and exact quantum description of coherent light scattering in a one-dimensional multi-mode transmission line coupled to a two-level emitter. Using recently developed scattering approach we discuss transmission properties, power spectrum, the full counting statistics and the entanglement entropy of transmitted and reflected states of light. Our approach takes into account spatial parameters of an incident coherent pulse as well as waiting and counting times of a detector. We describe time evolution of the power spectrum as well as observe deviations from the Poissonian statistics for reflected and transmitted fields. In particular, the statistics of reflected photons can change from sub-Poissonian to super-Poissonian for increasing values of the detuning, while the statistics of transmitted photons is strictly super-Poissonian in all parametric regimes. We study the entanglement entropy of some spatial part of the scattered pulse and observe that it obeys the area laws and that it is bounded by the maximal entropy of the effective four-level system.Comment: 22 pages, 6 figures; discussion extended, references adde

    Universal Dynamics Near Quantum Critical Points

    Full text link
    We give an overview of the scaling of density of quasi-particles and excess energy (heat) for nearly adiabatic dynamics near quantum critical points (QCPs). In particular we discuss both sudden quenches of small amplitude and slow sweeps across the QCP. We show close connection between universal scaling of these quantities with the scaling behavior of the fidelity susceptibility and its generalizations. In particular we argue that the Kibble-Zurek scaling can be easily understood using this concept. We discuss how these scalings can be derived within the adiabatic perturbation theory and how using this approach slow and fast quenches can be treated within the same framework. We also describe modifications of these scalings for finite temperature quenches and emphasize the important role of statistics of low-energy excitations. In the end we mention some connections between adiabatic dynamics near critical points with dynamics associated with space-time singularities in the metrics, which naturally emerges in such areas as cosmology and string theory.Comment: 19 pages, Contribution to the book "Developments in Quantum Phase Transitions", edited by Lincoln Carr; revised version, acknowledgement adde

    Integrable Floquet dynamics

    Get PDF
    We discuss several classes of integrable Floquet systems, i.e. systems which do not exhibit chaotic behavior even under a time dependent perturbation. The first class is associated with finite-dimensional Lie groups and infinite-dimensional generalization thereof. The second class is related to the row transfer matrices of the 2D statistical mechanics models. The third class of models, called here "boost models", is constructed as a periodic interchange of two Hamiltonians - one is the integrable lattice model Hamiltonian, while the second is the boost operator. The latter for known cases coincides with the entanglement Hamiltonian and is closely related to the corner transfer matrix of the corresponding 2D statistical models. We present several explicit examples. As an interesting application of the boost models we discuss a possibility of generating periodically oscillating states with the period different from that of the driving field. In particular, one can realize an oscillating state by performing a static quench to a boost operator. We term this state a "Quantum Boost Clock". All analyzed setups can be readily realized experimentally, for example in cod atoms.Comment: 18 pages, 2 figures; revised version. Submission to SciPos

    Many-body localization in the Fock space of natural orbitals

    Get PDF
    We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorder strength close to the disorder strength at which subdiffusive behaviour sets in, significantly below the many-body localization transition. We repeat the analysis in the conventionally used computational basis, and show that many-body localized eigenstates are much stronger localized in the Fock basis constructed out of the natural orbitals than in the computational basis.Comment: Submission to SciPos

    Non-ergodicity in the Anisotropic Dicke model

    Get PDF
    We study the ergodic -- non-ergodic transition in a generalized Dicke model with independent co- and counter rotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical probe, we show that the ergodic -- non-ergodic transition in the Dicke model is a consequence of the proximity to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. Besides, we show that there is no intrinsic relation between the ergodic -- non-ergodic transition and the precursors of the normal -- superradiant quantum phase transition.Comment: 5 pages, 4 figure
    • …
    corecore